War in the Pacific National Historical Park

Coastal Hazards & Climate Change Asset Vulnerability Assessment

April 2017
Contents

Executive Summary...3
Vulnerability Assessment Products & Deliverables...4
Digital Data Sources...4
Introduction & Project Description..5
General Protocol Methodology ..6
Results Summary & Discussion..7
Exposure Analysis...7
Sensitivity Analysis...9
Vulnerability Analysis ...10
Unique Factors & Considerations..12
Vulnerability Assessment Methodology...14
Additional NPS Climate Change Resources..21

This document has been developed by the National Park Service - Sustainable Operations and Climate Change Branch and Park Facility Management Division Facilities Planning Branch in partnership with Western Carolina University through a Task Agreement with the Southern Appalachian Cooperative Ecosystems Studies Unit. Contributing authors: Katie Peek (kmcdowell@wcu.edu), Blair Tormey (btorney@wcu.edu), Holli Thompson (hthompson@wcu.edu), Robert Young (ryoung@wcu.edu), Shawn Norton (shawn_norton@nps.gov), Julie McNamee (julie_thomas_mcnamee@nps.gov), and Ryan Scavo (ryan_scavo@nps.gov).

Please cite this report as: Peek, K.; B. Tormey; H. Thompson; R. Young; S. Norton; J. McNamee; R. Scavo. April 2017. War in the Pacific National Historical Park Coastal Hazards & Climate Change Asset Vulnerability Assessment. NPS 474/154044. National Park Service, Washington DC.

Cover Photo Credit: Photo from Asan Beach, War in the Pacific National Historical Park (WAPA). Photo courtesy of NPS-WAPA.

NPS 474/154044, April 2017
Executive Summary

The National Park Service (NPS) Sustainable Operations and Climate Change Branch (SOCC) of the Park Facility Management Division (PFMD), in partnership with Western Carolina University’s (WCU) Program for the Study of Developed Shorelines (PSDS), has developed a **Coastal Hazards and Climate Change Asset Vulnerability Assessment Protocol**. This protocol is meant to assess the vulnerability of infrastructure to multiple coastal hazards and climate change factors (i.e., erosion, flooding, storm surge, sea-level rise, and historical flooding), over a 35-year planning horizon (2050). Unlike natural resource vulnerability, which combines three metrics (exposure, sensitivity, and adaptive capacity), the newly developed method for assessing infrastructure includes only exposure and sensitivity to coastal hazards and climate change factors in the vulnerability score; adaptation strategies are instead examined in the context of the vulnerability results. The overall goal is to standardize the methodologies and data used, allowing managers to compare the vulnerability of coastal assets across local, regional, and national levels.

A total of 11 structures (building, shelters, monuments, and fortifications) and 25 transportation assets (roads, parking lots, and trails) are included in the vulnerability assessment of War in the Pacific National Historical Park (WAPA). Over one-third (39%) of assets at WAPA have high vulnerability to coastal hazards and sea-level rise and one-quarter (25%) have moderate vulnerability. Just over one-quarter (28%) of the assets have minimal vulnerability, meaning that the assets did not fall within any of the mapped exposure hazard zones (flooding, tsunami, erosion/coastal proximity, sea-level rise, and historical flooding).

A larger percentage of transportation assets are highly vulnerable compared to structures (44% compared to 27%). Of all the areas in the park, the Asan Beach area has the highest overall vulnerability (all asset are high), and the Mt. Alifan, Mt. Chachao, and Fonte Plateau areas have the lowest vulnerability (all assets are minimal) due to their inland and mountainous locations. The Apaca, Ga’an, and Banji Point areas have a mix of moderate and high vulnerability assets.

The high vulnerability assets at WAPA have a combined current replacement value (from the NPS facilities database) of approximately $5.9 million, which is about 17% of the total value of all assets analyzed. Three of the five highest value transportation assets have high vulnerability, including the most valuable transportation asset, the Asan Beach Parking Lot. No structures have both high vulnerability and high priority to the park (Asset Priority Index within the NPS facilities database > 70), but one structure, the T. Stell Newman Visitor Center, has moderate vulnerability and high priority to the park. Three of the five high priority transportation assets also have high vulnerability, including: Asan Beach Parking, Asan Beach Coast Trail, and Ga’an Point Paved Trails.
Vulnerability Assessment Products & Deliverables:

1) **Excel datasheets** - All results, as well as asset-specific scoring, are provided in tabular form. The exposure, sensitivity, and vulnerability scores are reported alongside the FMSS data for each asset, as well as the scores for each step of the analysis.

2) **GIS Maps and Layers** - All GIS data, including the exposure layers, exposure results, and final vulnerability results will be sent to the park as a separate file. The GIS data will also be available to view online at the ArcGIS Online (AGOL) website. Digital data sources can be found in the “Digital Data Sources” section of the document. Contact WCU or NPS for further information.

3) **Park Specific Vulnerability Results Summary Document** - This document, which explains the deliverables, results, and methodology.

Digital Data Sources

1. **FEMA Flood Zones** - FEMA's National Flood Hazard Layer (Official) on ArcGIS.com. http://fema.maps.arcgis.com/home/item.html?id=cbe088e7c8704464aa0fc34eb99e7f30. All areas of the park are covered by the official National Flood Hazard Layer.

2. **Sea Level Rise – Climate Change Response Program (CCRP)** - Data provided by NPS CCRP; full publication related to product in press (not accessible yet); metadata is available. Provided to WCU as geodatabase by CCRP. Utilized the Guam_slr_85_2050 layer, which represents the 2050 sea-level rise inundation model (high scenario).

3. **Tsunami Hazard Zone – NOAA’s Office for Coastal Management** - Data layer obtained from ArcGIS Online. Data includes the tsunami evacuation zones for Hawai‘i and Guam, developed by NOAA and local emergency management or county civil defense agency. These evacuation zones provide the minimum safe evacuation distance. http://tsunami.csc.noaa.gov/#/

The National Park Service (NPS) Sustainable Operations and Climate Change Branch (SOCC) of the Park Facility Management Division (PFMD), in partnership with Western Carolina University’s (WCU) Program for the Study of Developed Shorelines (PSDS), has developed a **Coastal Hazards and Climate Change Asset Vulnerability Assessment Protocol**. This protocol establishes a standard methodology and set of best practices for conducting vulnerability assessments in the built environment. Standardizing the methodologies and data utilized in these assessments allows managers to compare the vulnerability of coastal park assets across local, regional, and national levels.

A proposed standardized approach to assessing climate change vulnerability was described in a multiple agency (NOAA, NPS, USGS, DOD, NWF, and USFS) document titled “Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment” (Glick et al., 2011). This document defines the vulnerability of natural resources to climate change as: the extent to which a species, habitat, or ecosystem is susceptible to harm from climate change impacts. Vulnerability under this approach is comprised of three equally weighted metrics or components: exposure, sensitivity, and adaptive capacity:

\[
\text{Vulnerability} = \text{Exposure} + \text{Sensitivity} + \text{Adaptive Capacity}
\]

- **Exposure** refers to whether a resource or system is located in an area experiencing direct impacts of climate change, such as temperature and precipitation changes, or indirect impacts, such as sea-level rise.
- **Sensitivity** refers to how a resource or system fares when exposed to an impact.
- **Adaptive Capacity** refers to a resource’s or system’s ability to adjust or cope with existing climate variability or future climate impacts.

While this formula has been successfully applied to natural systems, some aspects are less appropriate for application in the built environment (i.e., buildings, roads, etc.). For example, structures cannot inherently adapt to climate change or other hazards, while natural resources often can (a salt marsh can adapt to changes in sea level by migrating upland, whereas a building cannot). Therefore, NPS and WCU have modified the methodology and formula for conducting vulnerability assessments of assets within national parks. The new modified formula for the vulnerability of the built environment (assets, infrastructure, buildings, transportation, etc.) is as follows:

\[
\text{Vulnerability} = \text{Exposure} + \text{Sensitivity}
\]

For this methodology, adaptive capacity of an asset is evaluated separately and is not included in the vulnerability score. This does not mean that understanding the adaptive capacity of an asset is not important. The range of adaptation strategies or options available for key vulnerable assets within a national park is the final and perhaps most important step in the overall analysis, as any adaptation actions taken for an asset will help reduce its exposure or sensitivity, which reduces vulnerability.

One goal of this protocol is to standardize methods for evaluating the exposure of NPS assets to coastal hazards and climate change. This includes the standardization of data inputs (i.e. widely available, established data) that will allow the application of a consistent methodology among units. Another goal is to create a more complete and effective set of indicators for assessing the sensitivity of assets to coastal hazards. The focus for this protocol is on structures and transportation assets in the NPS asset database (Facilities Management Software System; FMSS), but it could be adapted to other resources.
General Protocol Methodology

The Coastal Hazards and Climate Change Asset Vulnerability Assessment Protocol has four primary steps: 1) Exposure Analysis and Mapping, 2) Sensitivity Analysis, 3) Vulnerability Analysis, and 4) Adaptation Strategies Analysis. A detailed description of the protocol can be found in the final section of this document: Vulnerability Assessment Methodology. Further scoring information can also be found in the Excel results sheets that accompany this report. Below is a general description of the first three steps of the protocol.

Exposure Analysis and Mapping: Standard exposure indicators have been established as part of this protocol (Table 1); these indicators represent the primary factors that should be evaluated to determine an asset’s coastal hazard and climate change exposure (to the year 2050). The exposure analysis utilizes data imported into a Geographical Information System (GIS), as exposure is directly dependent on location relative to mapped hazard data. Assets located within an exposure indicator hazard zone (e.g., the storm surge zone) are assigned a higher score than assets located outside the zone. Scores for each indicator are then summed and binned to get a total exposure score. Final exposure scores fall into one of four ranking categories (based on the number of exposure zones): minimal exposure (asset does not lie within any mapped zone), low exposure (1 zone), moderate exposure (2-3 zones), and high exposure (4-5 zones).

<table>
<thead>
<tr>
<th>Exposure Indicators</th>
<th>WAPA Specific Hazard</th>
<th>WAPA Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding Potential</td>
<td>1% annual flood ± velocity/waves</td>
<td>FEMA Flood Zones (VE or AE)</td>
</tr>
<tr>
<td>Extreme Event Flooding</td>
<td>Tsunami Hazard</td>
<td>NOAA Tsunami Evac. Zones</td>
</tr>
<tr>
<td>Sea-Level Rise Inundation</td>
<td>2050 sea-level rise</td>
<td>NPS-specific sea-level rise modeling</td>
</tr>
<tr>
<td>Shoreline Change</td>
<td>Erosion & coastal proximity</td>
<td>Shoreline proximity buffers</td>
</tr>
<tr>
<td>Reported Coastal Hazards</td>
<td>Historical flooding</td>
<td>Park questionnaire</td>
</tr>
</tbody>
</table>

Sensitivity Analysis: Sensitivity is a function of the inherent properties or characteristics of an asset. A set of primary indicators has also been determined for asset sensitivity: flood damage potential, storm resistance and condition, historical damage, and protective engineering. The main data source for much of the sensitivity analysis is an asset-specific questionnaire (completed by park staff), which contains detailed questions related to each of the sensitivity indicators. A higher score is given for an unfavorable sensitivity indicator result (e.g., an asset built at grade will get a high score for flood damage potential). The sensitivity scores for each indicator are summed to obtain a total raw score, then binned into three categories: low, moderate, and high sensitivity. Assets with minimal exposure are excluded from the sensitivity analysis, since an asset must be exposed to a hazard in order to be sensitive to it.

Vulnerability Analysis: To calculate a vulnerability score for each asset, the exposure and sensitivity scores are summed, and then binned into four vulnerability ranking categories. The vulnerability ranking categories are as follows: minimal (assets with minimal exposure), low, moderate, and high.

Unique Factors: Each park has a unique set of conditions based on the data available and the geologic setting. At War in the Pacific National Historical Park (WAPA) the primary unique factors affecting the vulnerability analysis include: 1) the lack of erosion rate data and the use of proximity buffers, and 2) the lack of mapped storm surge data, prompting use of a tsunami evacuation zone for the extreme flooding exposure indicator.
Results Summary & Discussion

A total of **11 structures** (building, shelters, monuments, and fortifications) and **25 transportation assets** (roads, parking lots, and trails) were included in the vulnerability assessment of WAPA. The term “asset” will be used in this document to represent any structure or transportation infrastructure listed in FMSS, regardless of ownership. Also, the results for this vulnerability assessment represent a time frame of approximately 35 years, up to the year 2050.

This document provides a general summary of the results for exposure, sensitivity, and vulnerability of structure and transportation assets at WAPA. Specific scores for these factors are reported (alongside FMSS data) for each individual asset in the supplied Excel datasheets; final exposure and vulnerability results are also provided as GIS maps and layers.

Exposure Analysis:
The notable result of the exposure analysis at WAPA is that the assets are distributed relatively evenly across all exposure ranking categories (Table 2). This range is likely due to the widespread nature of assets at WAPA; the park has assets located over a broad geographic area and at different elevations (Figure 1). In addition, 28% of all assets have minimal exposure, which means that the asset did not fall within any of the mapped exposure hazard zones (flooding, tsunami, erosion/coastal proximity, sea-level rise, and historical flooding). These minimal assets are located in the higher elevation and inland portions of the park (Figure 1). At WAPA, most transportation assets (40%) have high exposure to coastal hazards and sea-level rise, while most structures (45%) have moderate exposure.

The most extensive coastal exposure zone at WAPA is the tsunami zone. Over 70% of assets analyzed in this assessment were located in the tsunami hazard zone and thus received unfavorable scores for the tsunami exposure indicator. In fact, many high priority assets in the park (Asset Priority Index [API] from FMSS > 70) are located within the tsunami hazard zone, including the T. Stell Newman Visitor Center (Figure 2).

Table 2. WAPA Exposure Results Summary. Sum of percentages may not equal 100 due to rounding.

<table>
<thead>
<tr>
<th>Assets</th>
<th>High Exposure</th>
<th>Moderate Exposure</th>
<th>Low Exposure</th>
<th>Minimal Exposure</th>
<th>Total #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures</td>
<td>1 (9%)</td>
<td>5 (45%)</td>
<td>1 (9%)</td>
<td>4 (36%)</td>
<td>11</td>
</tr>
<tr>
<td>Transportation</td>
<td>10 (40%)</td>
<td>5 (20%)</td>
<td>4 (16%)</td>
<td>6 (24%)</td>
<td>25</td>
</tr>
<tr>
<td>All WAPA Assets</td>
<td>11 (31%)</td>
<td>10 (28%)</td>
<td>5 (14%)</td>
<td>10 (28%)</td>
<td>36</td>
</tr>
</tbody>
</table>
Figure 1. General areas at WAPA. The assets in the Mt. Alifan, Mt. Chachao, and Fonte Plateau areas are well outside the coastal hazard and sea-level rise exposure zones. Background is aerial imagery from the ESRI streaming layer (see Digital Data Sources).

Figure 2. NOAA tsunami evacuation zone (used for the extreme flooding exposure indicator) near the T. Stell Newman Visitor Center. Background is aerial imagery from the ESRI streaming layer (see Digital Data Sources).
Sensitivity Analysis:
The sensitivity results for WAPA assets (structures and transportation combined) show 54% have high sensitivity and 46% have moderate sensitivity to the analyzed coastal hazards and sea-level rise (Table 3). When divided into structures and transportation, the sensitivity scores are slightly different. Most structures have moderate sensitivity (71%), while the transportation assets are primarily high sensitivity (63%). No structures or transportation assets have low sensitivity, and 10 assets were excluded from this analysis due to minimal exposure (outside the mapped exposure hazard zones, see previous section).

The majority of assets at WAPA (both structures and transportation) were reported as not elevated, not storm resistant, and not protected by an engineering structure. Around half of the transportation assets and one structure (the Asan Beach Liberators Memorial) were reported to have been historically damaged by coastal storms and flooding (Figure 3).

Table 3. WAPA Sensitivity Results Summary. Sum of percentages may not equal 100 due to rounding.

<table>
<thead>
<tr>
<th>Assets</th>
<th>High Sensitivity</th>
<th>Moderate Sensitivity</th>
<th>Low Sensitivity</th>
<th>Total # Analyzed</th>
<th>Excluded* (Min. Exposure)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Structures</td>
<td>2</td>
<td>29%</td>
<td>5</td>
<td>71%</td>
<td>0</td>
</tr>
<tr>
<td>Transportation</td>
<td>12</td>
<td>63%</td>
<td>7</td>
<td>37%</td>
<td>0</td>
</tr>
<tr>
<td>All WAPA Assets</td>
<td>14</td>
<td>54%</td>
<td>12</td>
<td>46%</td>
<td>0</td>
</tr>
</tbody>
</table>

*Assets with minimal exposure (in no hazard zone) were excluded from the sensitivity analysis. Total # analyzed is different for sensitivity compared to exposure and vulnerability.

Figure 3. Flooding and storm damage in the Asan Beach area of WAPA (looking west towards the memorial from the parking lot) in January of 2013. Photo courtesy of NPS- WAPA.
Vulnerability Analysis:
Over one-third (39%) of all assets at WAPA have high vulnerability to coastal hazards and sea-level rise, one-quarter (25%) have moderate vulnerability, 8% have low vulnerability, and 28% are minimal vulnerability (Table 4). A higher percentage of transportation assets are highly vulnerable compared to structures (44% compared to 27%). Of all the areas in the park (Figure 1), the Asan Beach area has the highest overall vulnerability (all high; Figure 4). The Mt. Alifan, Mt. Chachao, and Fonte Plateau areas have the lowest vulnerability (all assets minimal) due to their inland and mountainous locations. The Apaca, Ga’an, and Banji Point areas have a mixture of moderate and high vulnerability assets (Figure 4).

<table>
<thead>
<tr>
<th>Assets</th>
<th>High Vulnerability</th>
<th>Moderate Vulnerability</th>
<th>Low Vulnerability</th>
<th>Minimal Vulnerability</th>
<th>Total #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures</td>
<td>3 27%</td>
<td>3 27%</td>
<td>1 9%</td>
<td>4 36%</td>
<td>11</td>
</tr>
<tr>
<td>Transportation</td>
<td>11 44%</td>
<td>6 24%</td>
<td>2 8%</td>
<td>6 24%</td>
<td>25</td>
</tr>
<tr>
<td>All WAPA Assets</td>
<td>14 39%</td>
<td>9 25%</td>
<td>3 8%</td>
<td>10 28%</td>
<td>36</td>
</tr>
</tbody>
</table>

The high vulnerability assets at WAPA have a combined current replacement value (CRV; from FMSS) of approximately $5.9 million, which is about 17% of the total CRV of all assets analyzed. Three of the five highest value transportation assets have a high vulnerability, including the most valuable transportation asset, the Asan Beach Parking Lot (CRV = $1.1 million). None of the top five most valuable structures have a high vulnerability, and only one, the T. Stell Newman Visitor Center, has a moderate vulnerability.

No structures have both high vulnerability and high priority to the park (API > 70), but one structure, the T. Stell Newman Visitor Center, has moderate vulnerability and high priority to the park (API = 100). Three of the five high priority transportation assets have high vulnerability, including: Asan Beach Parking, Asan Beach Coast Trail, and Ga’an Point Paved Trails.

Overall, 39% of all WAPA assets have high vulnerability using this methodology (Table 4, Figure 4). However, there are several important caveats to the vulnerability assessment and results:

1) This methodology is meant to assess the vulnerability of park assets to coastal hazards and climate change factors combined (i.e., erosion, flooding, storm surge, sea-level rise, and historical flooding; see indicator list in Vulnerability Assessment Methodology section). Therefore, a park or section of park (like the Asan Beach area) that has maximum exposure to one or more of these factors (i.e., tsunami, flooding) will inherently have a higher overall exposure, and thus, vulnerability.

2) A major goal of this methodology is to create a standard protocol for vulnerability assessments, regardless of the data utilized. As higher quality data become available for the metrics of vulnerability (exposure and sensitivity), the final rankings for these assets may change. In these cases, the same protocol will be used, incorporating the more precise data, and increasing the reliability of the vulnerability results.
Figure 4. Example of mapped vulnerability results for WAPA assets. Only high or moderate vulnerability assets are labeled. The Mt. Chachao assets are not shown. Background is aerial imagery from the ESRI streaming layer (see Digital Data Sources).
Unique Factors & Considerations

Erosion & Coastal Proximity:
For shorelines without erosion rate data (ocean, estuarine, or developed areas), a simple coastal proximity buffer is applied. The coastal proximity buffer distance applied is 35 meters, which can accommodate an erosion rate up to 1m/year, and can account for the fact that infrastructure close to the shoreline is highly likely to experience a range of coastal hazards, including erosion, within the 35 year (2050) timeframe for this analysis. The standard proximity buffers were used for the shoreline of WAPA. Shoreline digitizing was done using the ESRI streaming world imagery layer at a scale of 1:2500.

Storm Surge, Tsunami, and Extreme Flooding:
For parks subject to tropical storms, a surge model (SLOSH: Sea, Lake, and Overland Surges from Hurricanes) is used for the extreme flooding exposure indicator. For parks that do not have storm surge data (e.g. mainland US west coast), an alternative data source is used, commonly either modeled extreme high water events (from the Climate Change Response Program, based on historic tide gage data), or modeled tsunami hazard zones (from a variety of sources).

For WAPA, a tsunami evacuation zone created by NOAA’s Office of Coastal Management (http://tsunami.csc.noaa.gov/#/) was used for the extreme flooding indicator (Figure 5). The use of the tsunami evacuation zone in place of storm surge data does not mean that storm surge is not a significant issue for WAPA. In fact, storm surge is a more probable hazard. However, any assets at risk to storm surge would almost certainly be located within the tsunami evacuation zone.

The island of Guam is located 100-150 km west of the Mariana Trench, a subduction zone where the older crust of the Pacific Plate subducts beneath the younger crust of the Philippine Plate. Overall, tsunamis are relatively rare along the Mariana Trench, due to steep subduction and slow plate motion. Guam is known to have been impacted by three damaging tsunamis in the last 200 years (1849, 1892, and 1993), all of which impacted the eastern coast.

WAPA is situated on Guam’s west coast, where tsunami risk is considerably lower than the relatively unpopulated east coast adjacent to the trench. While tsunami probability at WAPA is relatively low, a single tsunami has the potential for widespread devastation of infrastructure. Due to these extreme forces involved, any asset in the tsunami exposure zone at WAPA would also have a high sensitivity to this this factor. All assets, if impacted by a tsunami, would likely be severely damaged or even completely destroyed. This differs from other extreme flooding events such as storm surge, where assets can be engineered or elevated to avoid major damage. However, most of the assets at WAPA are not elevated above the surrounding ground level, and any tsunami flooding or wave activity would be of much greater force and magnitude than other flooding types. Therefore, in the context of vulnerability to tsunami hazards alone, any asset exposed to tsunami hazards would inherently have a high sensitivity to tsunamis as well.
Figure 5. Tsunami evacuation zone utilized for the extreme flooding exposure indicator. Data from NOAA’s Office of Coastal Management. Background is aerial imagery from the ESRI streaming layer (see Digital Data Sources).
Vulnerability Assessment Methodology

The Coastal Hazards and Climate Change Asset Vulnerability Assessment Protocol has four primary steps:

1) Exposure Analysis and Mapping
2) Sensitivity Analysis
3) Vulnerability Analysis
4) Adaptation Strategies Analysis

Step 1: Asset Exposure Analysis & Mapping

The first step in the protocol is to analyze the exposure of NPS assets to coastal hazards and climate change. Standard exposure indicators have been determined by WCU; these indicators represent the primary factors or hazards that should be evaluated to determine an asset’s exposure (to the year 2050). The five general exposure indicators are: flooding potential, extreme event flooding, sea-level rise inundation, shoreline change, and reported coastal hazards. The goal of this methodology is to standardize the data sources for exposure analysis, using widely available and regularly updated sources (when possible). Table 5 summarizes these indicators, as well as common data sources for each.

<table>
<thead>
<tr>
<th>Exposure Indicator</th>
<th>Common Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding Potential</td>
<td>FEMA Flood Zones (VE or AE); LiDAR DEM or other elevation model</td>
</tr>
<tr>
<td>1% annual flood chance ± velocity/waves</td>
<td>NPS-specific SLOSH model; tsunami models; tide gage recorded extreme high water data</td>
</tr>
<tr>
<td>Extreme Event Flooding</td>
<td>NPS-specific SLR modeling; LiDAR DEM or elevation other model</td>
</tr>
<tr>
<td>storm surge, tsunami, extreme high water</td>
<td>State or USGS erosion rate buffers; cliff retreat rate buffers; shoreline proximity buffers</td>
</tr>
<tr>
<td>Sea-Level Rise Inundation</td>
<td>Park surveys/questionnaire results; storm imagery & reconnaissance</td>
</tr>
<tr>
<td>2050 projection</td>
<td></td>
</tr>
<tr>
<td>Shoreline Change</td>
<td></td>
</tr>
<tr>
<td>erosion, coastal proximity, cliff retreat</td>
<td></td>
</tr>
<tr>
<td>Reported Coastal Hazards</td>
<td></td>
</tr>
<tr>
<td>historic flooding, visible slope instability</td>
<td></td>
</tr>
</tbody>
</table>

The exposure analysis utilizes data imported into Geographical Information Systems (GIS) format, as exposure is directly dependent on location and mapped hazard data (whether the area experiences the hazard). Digital hazard data are gathered for each of the exposure indicators, such as the online georeferenced FEMA flood map layers. The only dataset that does not come from a widely available, well established source is the reported coastal hazards layer, which is derived from storm imagery, reconnaissance, and direct communication with park personnel. Each exposure data layer thus represents an exposure indicator hazard zone for a particular park. Assets that are located within a particular zone are assigned a higher score than assets located outside of the hazard zone. The following sections describe the specific methods, scoring, and common data sources of each exposure indicator.
Flooding Potential:
The flooding potential indicator describes hazards related to the 1% annual flood chance, including waves and water velocity. For most parks, data for this exposure indicator comes from FEMA’s digital flood maps (https://msc.fema.gov/portal/search). Two primary FEMA flood zones are utilized: the VE and AE zones (and sometimes the A, AO, or AH). According to FEMA, the VE zones are areas subject to inundation by the 1-percent-annual-chance flood event, with additional hazards due to storm-induced velocity wave action, and the AE zones are areas subject to inundation by the 1-percent-annual-chance flood event (determined by detailed methods). For a further description of the FEMA flood zones, including the other A zones, see FEMA’s website: http://www.fema.gov/flood-zones.

If an asset is within the AE (or other A) zone, it receives an unfavorable score (4) for the flooding indicator. Any asset within the VE zone (the highest hazard zone) receives an unfavorable score for the flooding indicator, and is also assigned an automatic high score for exposure overall. Assets in neither flood zone receive a favorable score (1) for this indicator. Within some parks the FEMA data is incomplete; in these cases, other elevation data sources (such as LiDAR DEMs) are used to supplement the FEMA data.

Extreme Event Flooding:
The extreme event flooding indicator captures flooding from major storms, tsunami, and other extreme high water events. Storm surge is the primary extreme event flooding that occurs within parks along the east and gulf coast of the U.S. The data source for storm surge is a NOAA surge inundation model: Sea, Lake, and Overland Surges from Hurricanes (SLOSH; more information: http://www.nhc.noaa.gov/surge/slosh.php). The SLOSH model uses a composite of several thousand model runs with differing storm conditions each time to predict surge. There are two products of this: the Maximum Envelope of Water (MEOW), which is a set of worst case scenarios for certain characteristics like storm category, speed, trajectory, and tide level; and the Maximum of the Maximum Envelope of Water (MOM), which is the worst of all potential scenarios modeled. The surge data included in the exposure analysis (the SLOSH MOM for a category 3 storm) represents the maximum potential surge conditions. SLOSH storm surge data for this protocol was supplied by the NPS Climate Change Response Program (CCRP).

For parks that are not subject to tropical storms and surge (primarily west coast parks), an alternative extreme event flooding hazard is evaluated, commonly either modeled extreme high water events or modeled tsunami hazard zones. Data for extreme high water events were provided by CCRP; these data map historic patterns of extreme high water events based on tide gage information. The source of the tsunami hazard data is variable, but commonly comes from state agencies or universities.

If an asset falls within the mapped category 3 storm surge zone, extreme high water zone, or the tsunami hazard zone, it receives an unfavorable score (4) for the extreme event flooding indicator. If it lies outside of these zones, it receives a favorable score (1) for this indicator.

Sea-Level Rise:
The sea-level rise indicator describes the potential rise in water within parks by the year 2050. The data source for this exposure indicator is a NPS-specific sea-level rise inundation model provided by the NPS CCRP. The estimated inundation extent was achieved by utilizing a modified bathtub approach as developed by NOAA, and attempts to account for local and regional tidal variability and
hydrological connectivity. Polygon extents consist of 4 model-run scenarios using sea-level change maps produced by Colorado Center for Astrodynamic Research at the University of Colorado in Boulder. The maps are based on Representative Concentration Pathways (RCP), which are four greenhouse gas concentration trajectories. Two RCPs were modeled, a moderate RCP, 4.5 and the most extreme RCP, 8.5. Each RCP was projected to the years 2050 (condition used for this protocol) and 2100. One caveat of these data is that the model does not incorporate local land level change (subsidence or uplift). For many parks this is not a problem, as this change is relatively small compared to the amount of predicted water level rise. However, the sea-level rise data in parks with high rates of subsidence (parks in southern Louisiana) or uplift (many Alaska parks) will require adjustment.

If an asset falls within the mapped 2050 SLR zone, it receives an unfavorable score (4) for the sea-level rise indicator. If it lies outside of the mapped SLR zone, it receives a favorable score (1).

Shoreline Change:
For most parks, particularly those along the U.S. East and Gulf coasts, shoreline erosion buffers are created using known erosion rate data. These data are commonly acquired from the U.S. Geological Survey, Coastal and Marine Geology Program (http://coastal.er.usgs.gov/shoreline-change/) or from state coastal management programs. Short-term erosion rates (usually data ranging from the 1970’s to 2004) are utilized to make buffer zones for a 35-year time frame. Rates are binned into the following categories before buffering: 1m/year, 2m/year, 4m/year, 6m/year, 8m/year, etc. (continuing increments of 2 meters).

Many national parks along the west coast of the U.S. contain steep cliff shorelines. In some cases, these shorelines are retreating significantly due to cliff erosion; this is particularly true of areas comprised of unconsolidated materials (sands and gravels) or loosely consolidated bedrock (commonly sedimentary rock). In these cases, cliff retreat data will be utilized in place of erosion rate data (when available). Like erosion rates, the cliff retreat rates are utilized to make cliff retreat buffer zones for a 35-year time frame (2050). Below 1 meter, retreat rates are binned into detailed increments, with categories of: 0.25m/year, 0.5m/year, 0.75m/year, and 1m/year, and the same categories as shoreline erosion for rates above 1 meter: 1m/year, 2m/year, 4m/year, 6m/year, 8m/year, etc. (increments of 2 meters).

For shorelines without erosion or cliff retreat rate data (ocean, estuarine, or developed areas), a simple coastal proximity buffer is applied. The coastal proximity buffer distance used is 35 meters, which can accommodate an erosion rate up to 1m/year, and can account for the fact that infrastructure close to the shoreline is highly likely to experience a range of coastal hazards within the 35 year (2050) timeframe of this analysis.

If an asset falls within the erosion, cliff retreat, or coastal proximity buffer zone, it receives an unfavorable score (4) for this indicator. If it lies outside of these zones, it receives a favorable score (1).

Reported Coastal Hazards:
All of the other exposure indicators represent the potential area that could be affected by coastal hazards; the zones do not represent data from actual past events. Therefore, it is essential to have one indicator that includes actual reported coastal hazards. Understanding what has happened in the past in an area is essential to predicting what may happen in the future.
Historical flooding information for each park is commonly obtained from a questionnaire that is completed by park staff. Historical flooding information is also derived from storm imagery, reconnaissance visits, and direct communication with park personnel. For this indicator, the following question is posed to park personnel as part of the questionnaire:

“Have any of the following assets (or lands around the asset) been FLOODED in previous storm events? * This question is referring to the lands or area around an asset. Even if the asset was not built during a particular storm, we would like to know if that location has been flooded in the past.”

For high elevation parks with cliff retreat and no flooding hazards, a similar question is asked for this indicator, and is related to **visible slope instability**. For cliff retreat, it is important to know if the landscape around an asset is currently showing signs that further retreat and erosion is imminent.

After scores are given for each exposure indicator (either 1 or 4), they are summed and binned to get a total exposure score for each asset. Final binned exposure scores fall into one of four ranking categories (based on the number of exposure zones): minimal exposure (asset does not lie within any mapped hazard zone), low exposure (1 zone only), moderate exposure (2-3 zones), and high exposure (4-5 zones). Specific scoring ranges can be found within the Excel results sheets. Any assets that obtain an exposure ranking of minimal are not further analyzed for sensitivity. Finally, all asset types (transportation and structures) are analyzed for exposure using the same general methodology.

Step 2: Asset Sensitivity Analysis

The second step in the protocol is to analyze the sensitivity of NPS assets to coastal hazards and climate change. Similar to exposure, a set of indicators was determined for asset sensitivity. Unlike exposure, however, sensitivity is evaluated independent of location (only exposure is location-dependent). Sensitivity refers to how that asset would fare when exposed to the hazard, which is a function of the inherent properties or characteristics of the asset. While the sensitivity indicators for structures and transportation assets are generally the same (Table 6), how sensitivity is addressed during design and construction is very different.

Because digital sensitivity data are not generally available, the primary data source for much of the sensitivity analysis is an asset-specific questionnaire. This questionnaire contains detailed questions related to the various sensitivity indicators (e.g., is the structure elevated above base flood elevation). It is distributed to appropriate personnel within each unit—typically individuals that possess long institutional memory and familiarity with park facilities. Where appropriate, sensitivity data is also obtained from FMSS, the National Bridge Inventory, aerial imagery, and site visits.

Bridges are considered transportation assets, but have additional factors that must be considered when analyzing sensitivity to coastal hazards and climate change. Table 6 summarizes the four general sensitivity indicators (for all assets), as well as the four additional bridge indicators. The following section describes each sensitivity indicator in detail, including data sources, methodology, and scoring.
Table 6. Sensitivity Indicators for Asset Coastal Hazards and Climate Change Vulnerability

<table>
<thead>
<tr>
<th>Sensitivity Indicator</th>
<th>Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Damage Potential (Elevated)</td>
<td>Asset questionnaire; direct measurements of threshold elevation</td>
</tr>
<tr>
<td>Storm Resistance & Condition</td>
<td>Asset questionnaire; FMSS database</td>
</tr>
<tr>
<td>Historical Damage</td>
<td>Asset questionnaire; discussion with park staff</td>
</tr>
<tr>
<td>Protective Engineering</td>
<td>Asset questionnaire; field & aerial imagery analysis; WCU Engineering Inventory</td>
</tr>
</tbody>
</table>

Additional Bridge Indicators

<table>
<thead>
<tr>
<th>Sensitivity Indicator</th>
<th>Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Clearance</td>
<td>National Bridge Inventory (item 39)</td>
</tr>
<tr>
<td>Scour Rating</td>
<td>National Bridge Inventory (item 113)</td>
</tr>
<tr>
<td>Bridge Condition</td>
<td>National Bridge Inventory (item 59 & 60)</td>
</tr>
<tr>
<td>Bridge Age</td>
<td>National Bridge Inventory (item 27); FMSS database</td>
</tr>
</tbody>
</table>

Flood Damage Potential:
The flood damage potential indicator represents how likely an asset is to be inundated if the surrounding land area is flooded. For structures, this usually means whether or not the building is constructed on elevated stilts or pilings. Alternatively fill be added to the surrounding land to artificially elevate the asset above local ground height. This information is commonly obtained through the park questionnaire or visual inspection during site visits. For this indicator, the following question is posed to park personnel as part of the questionnaire:

"Are any of the following assets elevated at least 5 feet above local ground level (including critical utilities)? Examples include: 1) assets on stilts or pilings, or 2) assets built on artificial fill material above local ground level. NOTE: If elevated, but not quite 5 feet, indicate in comments."

When available, threshold elevation data collected by the NPS Resource Information Services Division (RISD) are included in the sensitivity analysis. These data, which have been collected at only a handful of parks thus far, are acquired with sub-centimeter Global Positioning System (GPS) equipment in order to record accurate threshold and asset elevations. In parks that do not have these data, the questionnaire (in combination with field work) is the primary data source used to determine whether an asset is elevated. The questionnaire generally inquires whether an asset is elevated above ground level – in the case of structures, at least 5 feet. Ideally, elevation of an asset would be compared to FEMA’s Base Flood Elevation (BFE), and the precise threshold elevations acquired by RISD make this comparison possible. This can aid in the determination of highly reliable elevation indicators for structures within parks. It should be noted however, that elevation is one of several indicators used to calculate the sensitivity of an asset, and availability of precise elevation data, while preferable, is not critical in gauging overall sensitivity and vulnerability.

The precise threshold elevation verifies the first metric (flood damage potential) within the sensitivity analysis. This elevation is compared to local BFE for each asset to determine if the asset’s primary threshold was above or below BFE. If an asset is elevated above BFE, it will receive a favorable score for the flood damage potential sensitivity metric (only if it is within a FEMA flood zone).

If an asset is reported to be elevated on stilts, built on elevated fill, or has a threshold above FEMA BFE, it receives a favorable score (1) for the flooding potential indicator. If it is not elevated (built at grade), it receives an unfavorable score (4) for the indicator.
Storm Resistance & Condition:
This sensitivity indicator represents how well an asset will resist damage from coastal hazards based on two factors: 1) overall storm resistance and 2) condition. Assets built to storm-resistant standards, with quality construction, or in good condition are less likely to be damaged by coastal hazards. For this indicator, the following two questions are posed to park personnel:

“Aren't any of the following assets built to resist flood/wave storm damage? Examples include: 1) assets built to specific storm-resistant standards/engineering codes, or 2) assets particularly or inherently resistant to other forms of damage or deterioration (e.g., fortifications).”

“Aren't any of the assets listed below particularly vulnerable to flood/wave damage due to condition? In other words, is the asset in poor condition due to deterioration, lack of maintenance, etc.? DON'T consider the location of the asset (even if it is near the water or commonly flooded), only consider the physical condition of the asset itself. The condition should be considered independent of the asset’s location.”

This sensitivity indicator is scored as a combination of storm resistance and condition. If an asset is reported to be storm resistant, it receives a favorable score (1) for half of the total score for this indicator (and vice versa). If the asset is reported to be in poor condition, it receives an unfavorable score (4) for half of the total score for this indicator (and vice versa).

Historical Damage:
The historical damage indicator represents if an asset has been damaged by coastal hazards in the past, as assets that have been previously damaged are more likely be damaged in the future. This is similar to the reported coastal hazards exposure indicator, but instead of focusing on the site or area around an asset, this indicator is focused on damage to the asset itself. For this indicator, the following question is posed to park personnel as part of the questionnaire:

Have any of the following assets been significantly DAMAGED in previous storm/flooding events (water/wave damage only)? * This question is focused on the actual damage from an event (the prior flooding question is about the LAND near the asset being inundated)

If an asset is reported to have been damaged in the past, it receives an unfavorable score (4) for this indicator. If it has not been damaged in the past it receives a favorable score (1) for the indicator.

Protective Engineering:
This indicator represents if an asset is protected by engineering including hard structures (e.g., seawalls, bulkheads) or landscape modifications (e.g., significant drainage alteration, major restored landscape). This indicator assumes that assets protected with engineering are less likely to be damaged by coastal hazards. Data sources include the questionnaire, the NPS coastal engineering inventory (http://www.nature.nps.gov/geology/coastal/monitoring.cfm), and site visits. The following question is posed to park personnel as part of the questionnaire:

Are any of the following assets currently being protected by an engineered structure (e.g., seawall, bulkhead) or other major engineering (e.g. drainage, major landscape modification, major restored landscape)? Explain if needed.

If an asset is reported to be protected by engineering, it receives a favorable score (1) for this indicator; if the asset is not protected by engineering, it receives an unfavorable score (4) for the indicator.
Bridge Indicators: Clearance, Scour Rating, Condition, and Age:
For bridges within the National Bridge Inventory (NBI) database (public bridges over 20 feet in length), additional indicators are considered; the data for these indicators comes directly from the NBI database. The bridge sensitivity additional indicators include: clearance, scour rating, condition, and age. Table 7 below describes each indicator, including the description, rationale, and scoring.

Table 7. Additional Bridge Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description & Rationale</th>
<th>Scoring (NBI score = sensitivity score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>Bridges with higher clearance above the water surface are less likely to be damaged by coastal hazards.</td>
<td>Amount of clearance in feet: > 15 = 1; 9-15 = 2; 1-8 = 3; 0= 4</td>
</tr>
<tr>
<td>Scour Rating</td>
<td>Bridges with scour issues are more likely to be damaged by coastal hazards.</td>
<td>Rating: n/a = 1; low & stable (5-8) = 2; stable (4) = 3; critical = 4</td>
</tr>
<tr>
<td>Condition</td>
<td>Bridges in poor condition are more likely to be damaged by coastal hazards.</td>
<td>Condition Rating: n/a = 1; 0-3 = 2; 4-6 = 3, 7-9 = 4</td>
</tr>
<tr>
<td>Age</td>
<td>Bridges closer to their lifespan are more likely to be damaged by coastal hazards.</td>
<td>Age (in years): 0-25 = 1; 26-50 = 2; 51-75 = 3; > 75 = 4</td>
</tr>
</tbody>
</table>

To calculate a sensitivity score, each asset is first given a score for all applicable indicators. These scores are summed to obtain a total raw score for sensitivity, then binned into three categories reflective of the number of unfavorable indicators: low sensitivity, moderate sensitivity, and high sensitivity. Specific scoring ranges can be found within the Excel results sheets.

Step 3: Asset Vulnerability Analysis
To obtain a vulnerability score for each asset, the exposure and sensitivity scores are summed, and then binned into four vulnerability ranking categories. The ranking categories are as follows: minimal vulnerability (assets with minimal exposure and not included in the sensitivity analysis), low vulnerability, moderate vulnerability, and high vulnerability. Specific scoring ranges for vulnerability can be found within the Excel results sheets. A subset of the assets from the completed vulnerability analysis will be chosen by the park for development of adaptation strategies (step 4).

Step 4: Adaptation Strategies Analysis
After the vulnerability analysis is complete, adaptation strategies can be analyzed for key assets within each park. FMSS data such as Asset Priority Index (API) and Optimizer Band (OB) can help select the assets to analyze for adaptation strategies. Assets analyzed will likely include those with high vulnerability and high priority and/or high criticality (API/OB), as well as high vulnerability assets with low priority and/or criticality. This adaptation analysis begins with discussions with the park, or by way of a questionnaire. This portion of the analysis focuses on the options available to the park to reduce the overall vulnerability of key assets. An outline of potential adaptation strategies to reduce coastal hazards and climate change vulnerability has been compiled by WCU for both structures and transportation assets (Table 8).
Table 8. Adaptation Strategies to Reduce Vulnerability of Assets to Coastal Hazards and Climate Change

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effect on Vulnerability and Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Elevate</td>
<td>Reduces the sensitivity of the asset; elevating a structure (and critical utilities) or transportation asset (i.e., a road) reduces the risk of flood damage.</td>
</tr>
<tr>
<td>☑ Relocate</td>
<td>Reduces the exposure of the asset; relocating the asset to a lower risk area reduces the likelihood that it will experience impacts from coastal hazards/SLR.</td>
</tr>
<tr>
<td>☑ Protect/Engineer</td>
<td>Reduces the exposure and/or sensitivity of the asset; protecting the asset with an engineered structure or landscape modifications (i.e., drainage) can reduce the likelihood that the asset will experience, or obtain damage from, coastal hazards/SLR.</td>
</tr>
<tr>
<td>☑ Decommission & Remove</td>
<td>Eliminates the vulnerable asset.</td>
</tr>
<tr>
<td>☑ Storm-Resistant Redesign</td>
<td>Reduces the sensitivity of the asset; redesigning the asset to be more storm resistant can reduce the likelihood of damage from coastal hazards/SLR.</td>
</tr>
<tr>
<td>☑ Engineering Downgrade</td>
<td>Reduces the sensitivity of the asset; downgrading the amount of engineering (i.e., replacing paved parking lot with shell material lot) can reduce the cost of rebuilding after damage and gives more flexibility for replacement.</td>
</tr>
</tbody>
</table>

This protocol is designed solely to assess the vulnerability of physical infrastructure. However, there are other adaptation actions for vulnerable assets that would not reduce the vulnerability of the physical asset, but instead its function. For example, a park might consider moving the critical contents within a building to a higher floor to reduce potential flood damage. Similarly, parks may decide to shift an asset’s function to a less vulnerable asset. These adaptation actions do not change the vulnerability of the original asset (i.e., exposure and sensitivity remain the same); instead these actions change the criticality of the asset, potentially making it less of a concern to the park.

Additional NPS Climate Change Resources

Additional efforts are being made by NPS to address climate change in the coastal zone, as well as other critical environments. A number of these studies aim to improve the understanding of overall trends in climate change stressors, while others have focused on recording the specific effects of those stressors on natural and cultural resources within parks. Using this research and the latest climate science, the NPS is guiding adaptation efforts at units nationwide. Below are some of the climate change related resources at NPS:

- General Climate Change at NPS: http://www.nps.gov/subjects/climatechange/index.htm
- Climate Change Adaptation for Cultural Resources: http://www.nps.gov/subjects/climatechange/adaptationforculturalresources.htm
- Coastal Adaptation: http://www.nps.gov/subjects/climatechange/coastaladaptation.htm